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A New Approach to Directional
Survey Interpretation and Course
Correction by the Sectional
Method

An obligue circular arc representation for wellbore trajecories, a geometric analysis
termed the sectional method, is presented. This approach permits projected line
segments to be functions of the dogleg angle and to be related to usually measured
displacements between survey stations. The advantages of this analysis are: a so-
lution for the dogleg angle and a method of survey interpretation, the sectional
method; a procedure for exact interpolation of true vertical depth, azimuth, and
inclination between survey stations; a basis of solution for a computer program
which provides course correction information during a turn to a target. The program

" provides a solution summary for a course correction from various survey stations

in a well to any planned target. As a result, an optimum course correction or
“minimum plugback depth’® can be quickly determined. Once the desired kickoff
point is selected, the program provides an exact solution of true vertical depth,
azimuth, inclination, and toolface angle for every 100 of correction course length.
The latter result provides a dramatic improvement in existing technology because
all measurements used to control the correction run are now based on a center of
turn rather than the arbitrary reference used in the typical ouija board solution;
and because the solution is exact, such variables as effective toolface angle can better
be evaluated and precisely corrected resulting in the smoothest possible turn with

minimum doglegs.

Introduction

The radius of curvature method (Wilson, 1968) was the first
method for computing wellbore trajectories using a form of
circular arc approximation. Rivero (1971) presented a method
for interpolation of rectangular coordinates between stations
using the radius of curvature method. Taylor (1972) conclu-
sively showed that the minimum curvature between two survey
stations is given by an oblique circular arc. The widely used
minimum curvature method was a result of this analysis. Zar-
emba (1972) used matrices and an oblique circular arc to derive
an alternate analysis often referred to as the circular arc method.

Like the foregoing methods, the present analysis, termed
the sectional method, also employs the oblique circular arc
approximation for a segment of the wellbore trajectory. How-
ever, the sectional method differs in that the derivation ap-
proach is thought to be more easily visualized. As a result, it
provides a basis of analysis for related directional surveying/
drilling problems. The clarity of the method results from the
projection of co-planar line segments associated with the
oblique circular arc onto the horizontal and vertical planes.
Thus, these easily visualized sketches show the physical sig-
nificance of mathematical relationships between the dogleg
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angle and straight line distances in the normally referenced
rectangular coordinate system. Once all the associated linear
measurements are expressed as functions of the dogleg angle,
the following becomes apparent: 1) a solution exists for the
dogleg angle of the circular arc approximation to the wellbore
trajectory between any two survey stations: and 2) Solutions
for other problems (such as interpolation along the circular
arc) become possible from analysis of the geometric and math-
ematical relationships established in development of the
method.

Concepts

The orthogonal axes shown in Fig. 1 define a three-dimen-
sional space for the derivation of the sectional method. Point
A is the origin. The positive directions are north, east and
down. A ‘‘turn plane’’ is oriented at an oblique angle above
a horizontal plane. Point S2 is a point in common with the
two planes. Points, C, S1 and B, are contained in turn plane
and are above the horizontal plane. The turn plane contains
a “‘circular arc’’ which represents & section of the wellbore
trajectory. The point, C, is the center of turn of the arc. Points,
S1 and S2, represent the first and second survey stations, re-
spectively. S1 is above S2. The angle ¥ is the angle swept by
the radius of the circular arc between points, S1 and S2. Point
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Fig.1 Orientation defined by turn plane and circular arc approximation
to a section of the wellbore

B is the point of intersection of tangents drawn to the arc at
S1 and S2.

Two labeled vertical planes are shown in Fig. 2. The first
plane, labeled ‘“‘Ist PLANE,” is defined by a vertical cross
section through the tangent of the arc which contains line
segment S1-B. Intersection of this plane and the horizontal
plane forms line ““AZM1.’ In a similar manner, the line AZM2
is formed. -

Angles, fhand 6,, are azimuth angles measured clockwise
from north in the horizontal plane. Angle A is the acute angle
between lines AZM1 and AZM2.

Nomenclature

Fig. 2 Vertical planes and azimuth

Trigonometric Relationships

The Turn Plane. The ‘‘turn plane” shown in Fig. 3 con-
tains line segments, labeled R, which represent the radius of
the circular arc. Line segments S1-B and S2-B are tangents to
the arc at stations S1 and S2. The length of each of these
tangents is equal to the value, ReTan(y/2). This value equals
the length of the side opposite the angle, ¥/2, in both right

D, = magnitude of distance from chord of inter-

preted circular arc to arc at particular point

of interest along chord or arc

horizontal distance between adjacent survey

stations

dogleg severity

component of departure of survey station

in east/west direction (east taken as posi-

tive)

ratio used for interpolation; linear displace-

ment (vertical, horizontal or measured

depth) from first survey station to point of

interest (or related point on chord of arc)

divided by total length calculated or meas-

ured between two stations

ratio used to take advantage of symmetry

about line of bisection of dogleg angle, v;

used for derivation of D, and related to F.

by F' = F.for 0<F.<0.5and F’ = 1 —

F,for 0.5<F.<1.0

ratio of measured course length between

first survey station and interpolation point

to total length between stations

= course departure

MD = measured depth (course length)

AMD = change in measured depth (course length)

AN/S = component of departure of survey station
in north/south direction (north taken as
positive)

Departure =

DLS =
AE/W =

F. =

F' =

164/ Vol. 114, JUNE 1992

R = turn radius for circular arc interpreted be-
tween survey stations
S1 = shallower survey station of adjacent pair
S2 = deeper survey station of adjacent pair
TVD = true vertical depth
AX,AY;,AZ; = coordinate displacements between first sur-
vey station, S1,and point on circular arc
where interpolation of coordinates is de-
sired
AX,AY,AZ, = coordinate displacements between first sur-
vey station, S1, and the second, S2
¥ = angle of turn for circular arc interpreted
between survey stations; also, dogleg angle
¢ = inclination angle
w = angle subtended by arc drawn between first
survey station and interpolation point
f = azimuth angle
& = angle subtended by arc drawn between in-
terpolation point and midpoint of arc be-
tween S1 and S2; positive for w=(y/2),
otherwise negative ‘
7™ = 3.14159265 (mathematical constant)
a,8,y = direction cosines for defined line segment

and associated with coordinate directions
X, Y and Z, respectively

NOTE: Oilfield units understood unless otherwise specified.
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Fig. 6 Dogieg severity detail

Line segments S1-D and S2-D are created by this bisection and
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eachis part of a right triangle wherein each adjoining radius
is the hypotenuse. These triangles, respectively, are C-D-S1
and C-D-S2. The lengths of line semgents S1-D and S2-D can
each be expressed as Rssin(y/2); and the “straight line’” dis-
tance from S1 to S2 is 2R «sin(y//2).

Vertical Planes. Refer now to Fig. 4. Angle ¢, is the in-
clination at the first survey station, S1. By construction, point
B is directly above point A. Line segments S1-B, F-B, and G-
A are contained in the same vertical plane. Segment FBisa
horizontal projection of segment $1-B and is the side opposite
angle ¢, in the right triangle S1-F-B. Thus, the length of F-B
is S1-Besing, or, by substituting Retan(y/2) for S1-B, this
length is Retan(y/2)+sing,. Line segment S1-F is a vertical
projection of S1-B. Its length is Retan(y/2)«cose;.

In a similar analysis, ¢, is the inclination angle at S2, the
second survey station. Line segment S2-A is the side opposite
angle ¢; in right triangle S2-A-B. The length of this segment
is Retan(y/2)ssin(¢,). The length of the vertical line segment,
B-A, is Retan(i/2)«cos($s). It should be noted that the expres-
sion for the length of S1-G, the total change in true vertical
depth between the two survey stations, is Retan(y/

2)+[cos(¢1) + (¢)].

The Horizontal Plane. Reference is now made to Fig. 5
where consideration is given to triangle G-A-S2. The length
of the segment G-82 in this triangle is given by the law of
cosines. By substitution of — cosA# for the cosine of angle G-
A-52, the law of cosines for the length of G-82 is given in
Appendix A, Eq. (1), as

G-82=R-tan(y/2)+\/sin’¢; + sin’e, + 2+sing, »sine;+ COsAH
ey

As noted in Appendix A for the trivial case where ¥ =0,
the tangential method (API, 1985) should be used for this “no-
curvature” case. This method provides the following simple
equations which produce no error:

AN/S = AMD ssing,+cosf, (14)
AE/W = AMD«sin¢,-sinf, (15)
ATVD = AMDecos¢, (16)

Example Calculation

Typical application of the sectional method is shown in the
forthcoming example. Calculations for displacements and
dogleg severity listed in Table 1 for the measured depthinterval,
900-950 ft, are detailed as follows:

Input Data for Calculation:
Given at 900 ft MD—Azimuth, 6, = 225 deg; inclination,
¢ = 10.75 deg; measured depth, MD, = 900ft; true vertical
depth, TVD, = 898.40 ft; north/south displacement, N/S,,
= — 13.47 ft; east/west displacement, E/W, = — 66.70
ft

Given at 950 ft MD—azimuth, 6, = 231 deg; inclination,
¢2 = 13.50 deg; measured depth, MD, = 950 ft

Find

1) dogleg severity between survey stations; 2) true vertical
depth at the second station, TVD,; 3) north/south dis-
placement at second station, N/S,; 4) east/west displace-
ment at the second station, E/W,.

Dogleg Severity. From Eq. (7), the dogleg severity equation

is

DLS=(200/AMD)«cos ™ '\/1/2+(1+ cos¢; «Cos; + sing, -singh,-cosAf)

Substituting input data for the variables gives

DLS=(200/50)«cos — 1~/1/2+[1 + €08(10.75) «cos(13.5) + sin(10.75)sin(13.5)=cos(6)]
DLS =6.0429 deg per 100 ft

Geometric Solution Summary

Reference is now made to Fig. 6. At this point it should be
noted that expressions for all line segments in triangle G-A-
S2 have been developed. Further, the relationship developed
in Eq. (1) is valid for all values of Af between 0 and 180 deg.
From Fig. 6 it is also apparent that another expression for line
segment G-S2 is possible by means of the pythagorean theorem
in the right triangle $1-G-S2. This duplicity of solution results
in the number of available equations to be equal to the number
of unknowns in the mathematical relationships developed in
the four planes (3 vertical and 1 horizontal) related to char-
acteristics of the circular arc between survey stations S1 and
S2. As aresult, the dogleg angle, ¥, and the dependent radius,
R, can be solved for. All other displacements are functions of
these two unknown variables and known measurements.

In summary, the resulting equations developed by the sec-

tional method for directional survey analysis are:
DLS=(200/AMD)

ecos™ l{/1/2-(1 + COS(h| +COS P, + 5ind +Sine, » cOSAF)
M

AN/S=[(180-AMD)/(m=y)]
stan(y/1)«(sing, «cosh; +sing,+cosf;) (10)
AE/W =[(180-AMD)/(7y)] »tan(y/2)
*(sing; «cosf; + singscosfy) (11)

ATVD =R-+tan(y/2)+(cos¢, + cose,) (12)
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True Vertical Depth. From the forthcoming, the dogleg
angle is
¥ = DLS.AMD/100 = 3.0215
and from Eq. (12)
ATVD =[(180+50)/(w+3.0215)] stan(3.0215/
2)+[cos(10.75) + cos(13.5)]
ATVD = 48.88 ft
And because TVD, = TVD, + ATVD, then TVD, = 898.40
+ 48.88 = 947.28 ft

North/South Displacement. From Eq. (10)
AN/S=1[(180+50)/(7r+3.0215)]+tan(3.0215/2)
+[sin(10.75)»cos(225) + sin(13.5)scos(231)]

AN/S= —6.97 ft.

And because

N/S; = N/S; + AN/S

then N/S; = — 13.47 +(—6.97) = — 20.44 ft

East/West Displacement. From Eg. (11)
AE/W = [(180+50)/(w+3.0215)]-tan(3.0215/
2)+[sin(10.75)=sin(225) + sin(13.5)«sin(231)]
AE/W = — 7.84 ft

and because
E/W, = E/W; + AE/W
then E/W, = — 66.7 + (—7.84) =

— 74.54 ft

Transactions of the ASME



Table 1 Comparison of survey methods

Base Survey Data Minimum Curvature Solution Sectional Solution
RelativeCoords. Dogleg RelativeCoords. | Dogleg
INC AIM Measured| Vertical Severity| Vertical Severity
Depth Depth |[North= + | East= + Deg. per| Depth |North= + | East= + Deg. per
South= - | West= - [100 Feet South= - | West= - {100 Feet
0.00 | 360.00 0.00 0.00 2.56 -45.00 - 0.00 2.56 ~-45.00 -
0.00 | 360.00 50.00 50.00 2.56 -45.00 | 0.0000 50.00 2.56 -45.00 .0000
0.25 16.00 100.00 100.00 2.66 -44.97 | 0.5000 100.00 2.66 -44.97 | 0.5000
0.25 | 350.00 150.00 150.00 2.88 -44.96 { 0.2250 150.00 2.88 ~44.96 | 0.2250
0.50 {. 44.00 200.00 200.00 3.14 -44 .83  0.8138 200.00 3.14 -44 .83 | 0.8138
0.25 57.00 250.00 250.00 3.36 -44.58 | 0.5250 250.00 3.36 -44.58 | 0.5250
1.75 | 282.00 300.00 299.99 3.58 -45.24 | 3.8697 299.99 3.58 -45.24 | 3.8697
1.50 | 285.00 350.00 349.96 3.90 -46.62 | 0.5280 349,97 3.90 -46.62 | 0.5280
1.75 | 276.00 400.00 399.94 4.15 ~-48.01 | 0.7131 399.495 4.15 -48.01 | 0.7
2.25 | 276.00 450.00 449.91 4.34 -49.74 | 1.0000 449.92 4.34 -49.74 | 1.0000
2.25 | 275.00 500.00 499,88 4.52 -51.70 | 0.0785 499.88 4.52 -51.70 | 0.0785
2.50 | 269.00 581.00 580.81 4.63 -55.05 | 0.4349 580.81 4.63 -55.05 | 0.4348
1.75 1 250.50 600.00 599.79 4.53 -55.74 | 5.301 599.80 4.53 -55.74 | 5.3011
0.75 | 142.50 650.00 649.78 4.01 -56.26 | 4.2124 648.79 4.01 -56.26 | 4.2124
1.00 { 151.00 700.00 699.77 3.37 -55.85 | 0.5620 | - 699.78 3.37 -55.85 | 0.5620
2.50 | 201.50 750.00 749.74 1.98 -56.03 | 4.0345 749.76 1.98 -56.03 | 4.0345
§.25 | 213.00 850.00 849.16 -6.80 -61.22 | 6.8183 849.18 -5.80 -61.22 | 6.8183
10.75 | 225.00 900.00 898.40 -13.47 -66.70 | 5.1196 898.43 -13.47 -66.70 | 5.1196
13.50 1 231.00 950.00 947.28 -20.44 -74.54 | 6.0429 947.31 -20.45 -74.54 | 6.0429
19.75 | 234.50 | 1050.00 | 1043.06 -37.62 -97.39 | 6.3270 | 1043.08 -37.62 -97.39 | 6.3270
22.25 | 239.00 | 1100.00 | 1089.74 -47.40 [ -112.38 | 5.9467 | 1089.76 -47.40 | -112.38 | 5.9467
24.25 | 239.50 | 1150.00 | 1135.67 -57.49 | -129.34 | 4.0194 | 1135.70 -57.49 | -129.35 | 4.0194
26.50 | 234.50 | 1200.00 | 1180.85 -69.18 | -147.28 | 6.2106 | 1180.88 -69.18 | -147.28 | 6.2106
28.75 | 234.50 | 1300.00 | 1269.43 -86.10 | -185.02 { 2.2500 | 1269.47 -96.11 | -185.03 | 2.2500
29.00 | 235.00 | 1350.00 [ 1313.2% { -110.04 | -204.74 | 0.6951 | 1313.25 | -110.04 | -204.74 | 0.6951
29.50 | 236.50 | 1400.00 | 1356.84 | -123.78 | -224.93 | 1.7744 | 1356.88 | -123.79 | -224.94 | 1.7784
29.00 | 237.00 {-1450.00 | 1400.46 | -137.18 | -245.36 | 1.1130 | 1400.50 | ~137.18 | -245.37 { 1.1130
27.25.| 238.00 | 1550.00 | 1488.64 | -162.51 | -285.11 | 1.8123 | 1488.69 | -162.52 | -285.12 | 1.8123
26.25 | 241.00 | 1617.00 | 1548.47 | -177.82 | -311.07 | 2.5075 | 1548.53 | -177.83 | -311.09 { 2.5075
25.25 | 243.00 | 1663.00 | 1589.90 | -187.21 | -328.71 | 2.8796 | 1589.96 | -187.22 | -328.73 | 2.8796
21.50 | 243.00 | 1832.00 | 1745.00 | -217.64 | -388.44 | 2.2189 | 1745.06 | -217.65 | -388.46 | 2.2189
19.00 | 243.00 | 1925.00 | 1832.23 | -232.25 | -417.12 | 2.6882 | 1832.30 | -232.27 | -417.14 | 2.6882
16.75 | 242.00 | 2019.00 { 1921.68 | ~245.56 | -442.71 | 2.4157 | 1921.76 | -245.57 | -442.73 | 2.4157
14.75 | 242.00 | 2114.00 | 2013.10 | -257.67 | -465.47 | 2.1053 | 2013.19 | -257.68 | -465.50 | 2.1053
13.50 | 243.00 | 2209.00 | 2105.22 | -268.38 | -486.03 | 1.3406 { 2105.32 | -268.39 | -486.06 | 1.3406
12.75 | 245.00 | 2302.00 | 2195.79 | -277.64 | -505.01 | 0.9427 | 2195.89 | -277.66 | -505.03 | 0.9427.
12.00 | 246.00 | 2395.00 | 2286.63 | -285.91 | -523.14 | 0.8387 | 2286.73 | -285.93 | -523.16 | 0.8387
10.50 | 243.00 | 2430.00 | 2320.95 | -288.84 | -529.30 | 4.5990 | 2321.05 | -288.86 | -529.33 | 4.5990
12.00 | 241.00 | 2523.00 | 2412.16 | -297.37 | -545.31 | 1.6663 | 2412.26 | -297.39 | -545.34 | 1.6663
11.75 | 238.00 | 2685.00 | 2570.69 | -314.28 | -574.03 | 0.4111 | 2570.80 | -314.30 | -574.06 | 0.4111
11.75 1 237.00 [ 2727.00 | 2611.81 | -318.87 | -581.24 | 0.4849 | 2611.92 | -318.89 | -581.27 { 0.4849
10.75 | 233.00 | 2791.00 | 2674.58 | -326.02 | -591.47 | 1.9811 | 2674.69 | -326.03 | -591.50 | 1.9811
11.25 | 233.00 | 2852.00 | 2734.46 | -333.02 | -600.77 | 0.8197 | 2734.57 | -333.04 | -600.80 | 0.8197
10.75 | 233.00 | 2914.00 | 2795.32 | -340.14 | -610.22 | 0.8065 | 2795.43 | ~340.16 | -610.25 | 0.8065
10.25 | 232.00 | 2983.00 | 2863.16 | -347.79 | -620.19 | 0.7712 | 2863.27 | -347.81 | -620.22 | 0.7712
8.75 | 232.00 | 3068.00 | 2946.99 | -356.43 | -631.25 | 1.7647 | 2947.10 | -356.45 | -631.28 | 1.7647
8.00 | 228.00 | 3159.00 | 3037.02 | -364.93 | -641.41 | 1.0432 | 3037.13 | -364.94 | -641.44 | 1.0432
1.50 | 230.00.| 3230.00 | 3107.37 | -371.21 | -648.63 | 0.8000 | 3107.48 | -371.23 | -648.66 | 0.8000
7.00 | 228.00 | 3319.00 | 3195.65 | -378.57 | -657.11 | 0.6292 { 3195.77 | -376.59 | -657.14 | 0.629?
7.00 | 230.00 | 3410.00 | 3285.98 | -385.85 | -665.48 | 0.2678 | 3286.10 | -385.87 | -665.51 | 0.2678
7.50 | 228.00 | 3503.00 { 3378.23 | -393.55 | -674.33 | 0.6022 | 3378.35 | -393.57 | -674.36 | 0.5022
7.75 | 229.00 | 3592.00 | 3466.44 | -401.38 | -683.17 | 0.3180 | 3466.56 | -401.39 | -683.20 | 0.3180
8.00 | 230.00 | 3663.00 | 3536.77 | -407.69 | -690.57 | 0.4015 | 3536.88 | -407.71 | -690.60 | 0.4015

Comparison of Methods

For comparison, the sectional method was applied to data
published in Taylor’s paper (1972). Table 1 is a summary of
his data and computations. It may be noted that computations
with the two methods are almost equal. All dogleg severities
agree to four decimal places. Bottomhole location agrees to
within 0.04 ft. The minor differences occur because Taylor
assumed a straight line rather than an arc for small values of
dogleg angle.

API Bulletin D20 (1985) contains three equations for dogleg
severity in addition to Taylors. Table 2 shows computed DLS

Journal of Energy Resources Technology

values for the foregoing equations and the sectional method.
It may be noted that no significant differences exist between
any of the methods except the questionable resuits from the
modified radius of curvature method.

Interpolation Between Stations

Closer analysis of the geometric and mathematical relation-
ships established during development of the sectional method
allows one to recognize that it would be possible to develop a
method for interpolation between stations for the section of

JUNE 1992, Vol. 114/ 167



Table 2 Comparison of common equations for dogleg severity

Survey Data Base Dog1eE Severity Solutions From API Bulletin D20
(Min. Curvature DLS Values From TABLE 1 - Base For % Diff. Calculation)
Sectional Radius of Lubinski's Wilson's DLS for
INC AIM Mgasgged Method Curvature Method| DLS Solution  |Tangential Method
ep
DLS [% Diff. DLS  |% Diff. OLS  [% Diff. DLS  |% Diff.
0.00 | 350.00 0.00 - - - - - - - -
0.00 { 360.00 50.00 .0000 0.0 { 0.0000 0.0 | 0.0000 0.0 .0000 0.0
0.25 | 16.00 100.00 | 0.5000 .01 0.5191 3.8 | 0.5000 .0} 0.5000 .0
0.25 | 350.00 150.00 | 0.2250 .0 0.2269 0.8 1 0.2250 .0 [ 0.2250 .0
0.50 | 44.00 | 200.00 | 0.8138 .0 1.0669 | 31.1 0.8138 .0 ] 0.8138 0
0.25 ] 57.00 | 250.00 | 0.5250 .01 0.5127 2.3 | 0.5250 .0 { 0.5250 .0
1.75 | 282.00 | 300.00 | 3.8697 .0 | 8.7742 | 126.7 | 3.8697 .01 3.8697 .0
1.50 | 285.00 | 350.00 { 0.5280 001 0.5241 0.7 | 0.5280 .0 | 0.5280 .0
1.75 | 276.00 | 400.00 | 0.7131 00 07431 4.2 1 0.71131 0] 0.7 .0
2.25 1 276.00 | 450.00 1.0000 .0 1.0000 .0 1.0000 .0 1.0000 .0
2.25 1 275.00 | 500.00 | 0.0785 01 0.0785 .0 | 0.0785 .01 0.0785 .0
2.50 1 269.00 | 581.00 | 0.4349 .01 0.4468 2.7 1 0.4348 .0 0.4349 0
1.75 | 250.50 | 600.00 | 5.3011 0] 4.9420 6.8 1 5.3011 .01 5.3011 .0
0.75 | 142.50 | 650.00 | 4.2128 000 3.4632 17.8 | 4.2124 0 4.2124 .0
1.00-1 151.00 { 700.00 | 0.5620 .0 0.5814 3.5 1 0.5620 .0} 0.5620 0
2.50 { 201.50 | 750.00 | 4.0345 0] 5.3300 | 3241 4.0345 0| 4.0345 .0
§.25 ] 213.00 850.00 | 6.8183 0] 6.9985 2.6 1 6.8183 .0} 6.8183 .0
10.75 | 225.00 900.00 | 5.1196 .0 5.3889 5.3 1 -5.1196 0] 5.1196 .0
13.50 | 231.00 | 950.00 | 6.0429 0] 6.1723 2.1 6.0429 .0 ] 6.0429 .0
19.75 { 234.50 | 1050.00 | 6.3270 0 6.3609 0.5 1] 6.3270 0 6.3270 .0
22.25 | 239.00 | 1100.00 | §5.9467 .0 6.0509 1.8 1 5.9467 .0 ] 5.9467 .0
24.25 1 239,50 | 1150.00 | 4.0194 00 4.0210 .0 4.0194 0 4.0194 .0
26.50 | 234.50 | 1200.00 | 6.2106 .00 6.3371 2.0 | 6.2106 0] 6.2106 .0
28.75 | 234.50 { 1300.00 | 2.2500 QO 2.2500 0.0 | 2.2500 L0 2.2500 .0
29.00 | 235.00 | 1350.00 | 0.6951 .0 ] 0.6964 0.2 1 0.6951 .0 | 0.6951 .0
29.50 | 236.50 | 1400.00 1.7744 0] 1.7838 0.5 1.7744 .0 1.7744 .0
29.00 | 237.00 | 1450.00 | 1.1130 A1 1.1113 0.2 1.1130 0 1.1130 .0
27.25 | 238.00 | 1550.00 1.8123 .0 1.8089 0.2 1.8123 .0 1.8123 .0
26.25 | 241.00 | 1617.00 | 2.5075 A0 2.4798 1.1 2.5075 0] 2.5075 .0
25.25 | 243.00 | 1663.00 | 2.8796 .0 | 2.8576 0.8 | 2.8796 0| 2.8796 .0
21.50 | 243.00 | 1832.00 | 2.2189 00 2.2189 .01 2.2189 0] 2.2189 .0
19.00 | 243.00 | 1925.00 | 2.6882 .0 2.6882 .0 2.6882 .0 2.6882 .0
16.75 | 242.00 | 2019.00° | 2.4157 0] 2.4132 0.1 2.4157 00 2.4157 .0
14.75 | 242.00 | 2114.00 | 2.1053 O 2.1053 0 2.1083 .01 2.1053 .0
13.50 | 243.00 | 2209.00 1.3406 0| 1.3385 0.2 1.3406 .0 1.3406 .0
12.75 | 245.00 | 2302.00 | 0.9427 .0 0.9357 0.7 [ 0.9427 .01 0.9427 .0
12.00 | 246.00 | 2395.00 | 0.8387 0] 0.8369 0.2 ] 0.8387 .0 ] 0.8387 .0
10.50 | 243.00 | 2430.00 | 4.5990 00 4.5615 0.8 | 4.5990 .0 4.5990 .0
12.00 | 241.00 | 2523.00 1.6663 01 1.8737 0.4 1.6663 .0 1.6663 .0
11.75 | 238.00 | 2685.00 | 0.4111 .0 | 0.4075 0.9 ] 0.411% Q1 0.4 0
11.75 | 237.00 | 2727.00 | 0.4849 0] 0.4849 .0 ] 0.4849 .01 0.4849 .0
10.75 | 233.00 { 2791.00 1.9811 L0 1.8495 1.6 1.9811 00 19811 .0
11.25 | 233.00 | 2852.00 | 0.8197 0| 0.8197 .0 0.8197 01 0.8197 .0
10.75 | 233.00 | 2914.00 | 0.8065 0 0.8065 .0 0.8065 .0 [ 0.8065 .0
10.25 | 232.00 | 2983.00 | 0.7712 0] 0.7692 0.3 ] 0.7712 00 0.1712 .0
8.75 | 232.00 | 3068.00 1.7647 .01 1.7647 .0 1.7647 .0 1.7647 .0
8.00 | 228.00 { 3159.00 1.0432 O] 1.026¢ 1.6 1.0432 .0 1.0432 .0
©7.50 | 230.00 { 3230.00 | 0.8000 O] 0.7944 0.7 0.8000 .01 0.8000 .0
7.00 | 228.00 | 3319.00 | 0.6292 0 0.6250 0.7 ] 0.6292 .01 0.6292 .0
7.00 | 230.00 | 3410.00 | 0.2678 .01 0.2678 .0 0.2678 0] 0.2678 .0
7.50 | 228.00 | 3503.00 | 0.6022 .01 0.6065 0.7 ] 0.8022 .0 0.6022 .0
1.75 1 229.00 | 3592.00 | 0.3180 .01 0.3192 0.4 | 0.3180 0 0.3180 .0
8.00 | 230.00 | 3663.00 | 0.4015 0] 0.4030 0.4 1 0.4015 .0 | 0.4015 .0

the wellbore trajectory represented by the circular arc. Figures
8 and 9 are used for this analysis. It should be observed from
Fig. 8 that for any depth of interest, point X, along the segment
of the wellbore trajectory represented by the circular arc be-
tween stations S1 and S2, the location of that depth could be
determined if one could calculate the distance and direction
along the chord of the arc to point I and then vectorially add
the directed segment, D,, normal to the chord and extending
to point K on the arc. This is, in fact, what is developed in
Appendixes B through D. Figure 9 is used to develop a simple
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method to provide two additional solutions: 1) The distance
along the chord to point I for some known distance (change
in measured depth) from the first survey station to point K
(assumed point of interest); 2) The magnitude of the distance
from point I to the arc at point K. The required directions for
the displacement vectors from the first survey station to point
K are then derived from previously developed expressions for
the line segments shown in Fig. 8. Once the precise location
of point K is known, the interpolated inclination and azimuth
can be solved for from existing equations established in the
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development of the sectional method. Although the interpo-
lation process developed in the Appendixes is slightly lengthy
for hand calculation, it is very straightforward and lends itself
toward simple programming on any computer or programim-
able calculator. The stepwise process would be as follows:

1 Given the depth of interest, calculate F,,, the fractional
distance that it occurs between the two adjacent survey stations,
(MD;—-MD;)/(MD,— MD,).

2 Calculate the fractional distance along the chord, F,,
associated with the foregoing fractional distance along the
interpreted circular arc. This is given in Eq. (27) as

F.=0.5¢{1—sin[¢+(0.5 - F,;)]/sin(¥/2)}

Note that /2 was already solved for in calculation of the
dogleg angle between the two stations.

3 The displacement distance from the chord to the arc (D,
in Fig. 8) is given in Eq. (32) as
D,=[(180-AMD)/ ()]

« {cos[sin~'[(1 — 2F.) «sin(/2)]]1 — cos(/2) }

4 From Eq. (95), solve for the variable p

p=~/2+[1—sin(¢;)sin(p;)cos| Al — cos(p;)cos($2)]

5 The direction cosines for the displacement vector, D,,
are solved for by Egs. (46)-(48) as follows:

a = [sin(¢)sin(6,) ~ sin(¢»)sin(f)] /o
B = [sin(¢)cos(8;) — sin(¢2)cos(82)]/p

v =[cos(é1) —cos(é2)/p

6 Given the known displacements between stations S1 and
S2 (AX,, AY,, and AX)), the displacements between station S1
and the depth of interest, assumed to be on the circular arc at
point K in Fig. 8, can be calculated by Eq. (49)-(51) as follows:

AX;=F.sAX,+Dyocx

AY;=F AY,+ D,

AZi=FsAZ,+ Doy
7 The turn angle from station S1 to point K has the same
rate of turn (dogleg severity) as the dogleg angle between sta-
tions Si and S2. Thus, the turn angle to the depth of interest
can be calculated as follows:
"/’i=F m“tb
The inclination at the interpolated survey station at this point
can be calculated from Eq. (52) as
¢;=cos ™' {[AZ/R~tan(y/2)] — cos($y)}

8 By Eq. (53), the change in azimuth between station S1
and the interpolated survey station on the circular arc is
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Table 3

Interpolation of survey data by the sectional method

_ Survey Data Interpolated Data Sectional Solution
Interpolated ( )
Rel. Coordinates | Dogleg Rel. Coordinates | Dogleg
INC AIM Measured| Vertical Severity| Vertical Severity
Depth Depth [North= + | East= + Deg. per| Depth [North= + | East= + {Deg. per
South= ~ | West= - |100 Feet South= - | West= - {100 Feet
2.50 | 201.50 | 750.00 | 749.74 | 1.88000 |-56.0300 - 749.74 1.98 | -56.03 | 4.0345
3.16 ( 204.84 ) 760.00 )} 759.73 | 1.52680 [-56.2258 | 6.8183
3.83 ( 207.02 ) 770.00 ) 769.71 | 0.97893 |-56.4934 | 6.8183
4.50 ( 208.55 ) 780.00 ) 779.68 | £.33646 {-56.8328 | 6.8183
5.18 ( 209.68 ) 790.00 ) 789.65 |-0.40050 |-57.2439 | 6.8183
5.86 ( 210.55 ) 800.00 798.60 [-1.23187 |-57.7266 | 6.8183
.53 ( 211.24 ) 810.00 ) 809.54 |-2.15751 |-58.2810 | 6.8183
7.21 ( 211.81 820.00 ) 819.47 (-3.17731 |-58.906% | 6.8183
7.89 { 212.27 ) 830.00 ) 829.38 |-4.29111 |-59.6042 | 5.8183
.57 ( 212.66 ) 840.00 ) 839.28 [-5.49876 {-60.3729 | 6.8183 -
9.25 | 213.00 | 850.00 | 849.16 {-56.80008 |-61.2128 | 6.8183 | 849.16 -6.80 | -61.21 | 6.8183

Af=cos™'{[2+cos(¥;/2)— 1
. — cos(¢1)cos(#)]/ [sin(e1)sin($)]1}
9 The direction of azimuth change is calculated by
0,—0,)/A0
Then by Eq. (54), the azimuth at the second station is
61=0,xA0

Table 3 shows interpolated coordinates, as well as inclina-
tions and azimuth, between the measured depth of 750 and
850 ft. Note that DLS stays constant in value, as it should.

Application of Concepts

Derivation of the interpolation process is simply one example
of how the geometric and mathematical relationships devel-
oped in the sectional method can be extended to solutions for
others directional drilling problems. The method, is fact, pro-
vides a basis of definition and basic building blocks for sound
development of other directional drilling solutions. Another
such extension of the basic circular arc solution provided in
the sectional method is shown in Table 4. This is a listing of
output data from -a computer program designed for planning
and monitoring a course correction to a new target in a di-
rectional well. The program is basically divided into two sec-
tions. Section 1 provides a quick look for the overall design
as various stations are selected sequentially from some lowest
anticipated kickoff depth of some station uphole. The station
selected for kickoff is considered satisfactory for the dogleg
severity considered allowable and the overall dimensions of
the correction plan (correction run length, formation pene-
trated during the correction run, target entry angle, etc.). Part
1 in Table 4 shows the section where the target coordinates
are entered and successive stations uphole are entered under
‘“‘Present Position®’ as the situation at each station of interest
is evaluated. Part 1A shows the overall dimensions of the
course corrected. The minimum dogleg severity to just hit the
target is listed first. This provides a quick-glance, relative es-
timate of how far to move uphole if the initial estimated kickoff
Point is too close to the target. This process is continued until
a depth is zeroed in where correction run length, target entry
angle, TVD and displacement at the end of the correction run,
and straight section length into the target are satisfactory.

Once the kickoff station is selected, the program proceeds
to calculate a survey schedule for every 100 ft of the correction
run. The output includes all displacements, azimuth, incli-
nation and effective toolface angle at each station. Verification
is provided by including the coordinates for the center of turn.
Distance from each station to the center of the turn should be
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equal to the turn radius and the toolface should always be
pointed toward the same center. Note that as the station TVD
drops below the center of turn (500-600 ft) the effective tool-
face angle swings toward the top of the hole (angle less than
90 deg). Further indication that the turn is progressing normally
is based on a geologic analogy. From geology, the strike of a
plane is the direction along which the dip angle is least. In this
plane of turn, the same phenomenon occurs. Inclination drops
to & minimum as azimuth swings between 217 and 211 deg and
then begins to increase. This sequence of azimuth and incli-
nation change is difficult to visualize or predict without know-
ing something about the plane of turn. It should be noted that
this turn could not be predicted with the standard ouija board
approach. :

As a final check of the plan (see ‘“VERIFICATION’), the
calculated azimuths and inclinations were entered into the di-
rectional worksheet as though the measurements had .been
taken. The resulting check on displacements and calculated
DLS verify the accuracy of the correction plan. The program
can easily be rerun at each station to get an updated plan each
time allowing for a smooth correction from errors caused by
deviations of the actual drilling progress from the planned
course.

Conclusions

1 The graphical analysis used in the development of the
sectional method has resulted in a set of transformation equa-
tions for the calculation of wellbore tracjectories and dogleg
severities. Utilization of sectional method procedures and
equations has been demonstrated to provide reliable results.

2 An exact set of equations for determination of AX, AY,
AZ, ¢ and 0, have been developed for intermediate points
between survey stations. Definitions and relationships devel-
oped within the model for the sectional method are required
for derivation of these equations. Hence, they are an extension
of the sectional method and an added benefit resulting from
this type of analysis for a circular arc.

3 As aresult of development of the sectional method, all
linear projections associated with a circular arc have been
defined as a function of the calculated dogleg angle and/or
measured variables. Thus, the sectional method provides a
based of definitions, not previously defined in other methods,
for directional analysis and application of a circular arc model.

4 The potential for application of the concepts and defi-
nitions, defined herein, to analysis of related directional prob-
lems was demonstrated by the interpolation method and the
computer solution for the turn to a new target. In the latter
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Table 4

PART 1
NEW TARGET DIRECTION PROGRAM
Present Position:
1) East/West (+/-) Rel. Coord.: -1000
2) North/South (+/-) Rel. Coord.: -500
3) True Vertical Depth: 3500
4) Inclination (Degs): 35
5) Azimuth (Degs): 250
New Target Data:
6) East/West (+/-) Rel. Coord.: -2000
7) North/South (+/-) Rel. Coord.: -2000
8) True Vertical Depth: 6500
9) Desired Turn Rate (Deg/100 Ft): 3
PART 1A
Minimum DLS required to hit the target = 1.116 deg/100ft
Formation entry angle = 31.26 deg
Correction Run Length = 741.38 ft -—-> Straight Section = 2774.21 ft
Situation at end of correctionrun; -~ - - - - - - - - - - - - - - - - - -
Azimuth to TGT = 209.22 deg Inclination to TGT = 31.26 deg
East/West (+/-) = -1297.4 ft North/South (+/-) = -743.7 ft
True Vertical Depth = 4128.5 ft
PART 2
COURSE CORRECTION SURVEY SCHEDULE
Verification: Turn Radius = 1909.86 feet
Arc Center: X= 239.38 feet Y= -1868.83 feet
Z= 3987.67 feet
Course East/ North/ TVD AZM INC TFA
Length West South (LT)
0 -1000.00 -500.00 3500.00 250.0000 35.0000 116.43
100 -1052.18 ~-521.48 3582.55 245.1617 33.7577 112.44
200 -1100.81 -546.66 3666.20 240.0270 32.7164 108.15
300 -1145.77 -575.46  3750.74 234.6257 31.8956 103.58
400 -1186.94 -607.81 3835.93 229.0094 31.3130 98.79
500 -1224.19 -643.61 3921.53 223.2429 30.9821 93.86
600 -1257.44 -682.77 4007.31 217.4104 30.9110 88.85
700 -1286.59 -725.18 4093.04 211.5969 31.1016 83.87
741 -1297.42 -743.66 4128.45 209.2150 31.2563 81.83
VERIFICATION
Directional Drilling Worksheet ( Sectional Method )
Directional Program Plan:
Company: Rerference: Target Coords: KOP: EOBU-TVD:
Field: Latitude 0 N/S= +/- : -2000.00 BU RATE: EOBU~MD:
Hell: Longitude: 0 E/W= +/- : -2000.00 D0 RATE: E0BU-DEP:
Engineer: Well Offset: TVD : 6500 Entry Ang: 8DO-TVD:
Survey: N/S= +/- : -500.00 DIST-TGT: 1802.78 (-1 = N/&) BDO-MD:
Date: E/W= +/- :-1000.00 CNTR-TGT:  225.00 Deg. Slant Ang: BDP-DEP:
"' . 2828.43 Ft.
. 3-Dim
Survey | Measured. | INC AIN VTN:? ] Relative Coords. | potavive | Closure| Distance Aig In:l‘ln. 52321$3
Number Depth Sr ;ﬁa North= + | East= + | Closure Azimuth to 167 Target |D /100¥t
: Ep South= - | West= - Target arget |Ueg
0 0 [ 35.00 ] 250.00 | 3500.00 | -500.00 [ -1000.00 | T17718.03 [ 243.43 | 3500.00 | 27369 [ 37.00 -
1 100 | 33.76 | 245.16 | 3582.55 | <-521.49 | -1052.18 | 1174.32 | 243.64 3405.28 | 212.66 | 31.05 3.00
2 200 | 32,72 | 240.03 | 3666.20 | -546.67 | -1100.82 | 1229.08 | 243.58 | 3309.25 [ 211.75 | 31.09 3.00
3 300 | 31.90 | 234.63 | 3750.73 | -575.47 | -1145.78 | 1282.18 | 243.33 | 3212.08 | 210.95 | 31.14 3.00
4 400 | 31.31 | 229.01 | 3835.82 | -607.81 | -1186.95 | 1333.53 | 242.88 | 3113.93 | 210.29 | 31.18 3.00
5 500 | 30.98 | 223.24 | 3921.52 | -643.61 | ~1224.20 | 1383.08 | 242.27 | 3014.99 | 209.77 | 31.22 3.00
6 600 | 30.91 | 217.41 | 4007.31 | -~682.77 | -1257.45 | 1430.86 | 241.50 | 2915.47 [ 209.41 | 31.24 3.00
T 700 | 31.10 | 211.60 | 4093.04 | -725.18 | -1286.59 | 1476.89 | 240.59 | 2815.59 | 208.23 | 31.25 3.00
8 741.38 | 31.26 | 209.22 | 4128.45 | -743.65 | -1297.43 | 1495.44 | 240.18 | 2774.22 | 209.21 | 31.26 3.00

case, the circular arc is simply defined to contain multiple
stations instead of two. The dogleg angle and center of turn
now relate to the entire correction run and the known variables
change. The power of the program is demonstrated in the fact
that it is capable of providing not only the overall course design,
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but explicit measurements which can be used to accomplish
the design and monitor progress. Consequently, the magnitude
of the course corrections can be minimized resulting in min-
imum difference between planned and actual dogleg severity
throughout the correction run.
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APPENDIX A

Derivation of Sectional Method Equations

Dogleg Severity. Refer to Fig. 6. The length of line segment
G-82 in triangle G-A-S2 is given by the law of cosines. By
substitution of —cosA@ for the cosine of angle G-A-S2, the
law of cosines for the length of G-S2 is written

G-82 = Retan(y/2) «~/sin’}, + sin’¢; + 2+5in¢, *sing,CcosAf
' @)
Expressions now exist for the sides of the right triangle, S1-
G-52. The equation for angle y is developed in the following:

Substitution of expressions for sides of the right triangle S1-
G-82 into the pythagorean theorem yields

[2R -sin(y/2))* = [R-tan(y/2)«(cos($,) + cos(¢2))]?
+ [Retan(y/2) «~/sin’p; + sin’gh, + 2+5ing; +sine, 2+ cosAH]>
3]

Substitution of sin(y/2)/cos(y/2) for tan(y/2) and division
of both sides by [R-sin(y/2)]? yields

4=[(cos¢; + cos$,)/(cos(y/2)]?
+ [V/sin’¢; + sin’¢, + 2 «sing, «sing, «cosA6/cos(y/2)]>
(3)

Simplification and solution for cos(y/2) results in

Displacements. Refer to Fig. 7. From this figure, it should
be observed that the north/south displacement of survey sta-
tion S2 from survey station S! is expressed

AN/S =(G-A+cost,) + (A-S2+cosb,) (8)

Substitution of expressions for the line segments in Eq. (8)
yields

AN/S =[Retan(y/2)«sing;]«cosh,
+[Retan(y/2)«sing,]-cosb,
= Retan(y/2)«(sing; «cosh, + sing,+cosd,) ()

In terms of known variables and in oilfield units, the radius
of a circular arc is (180sAMD)/(%=y). substitution of this
expression for R in Eq. (9) gives '

AN/S =[(180+AMD)/ (7 +)] stan(y/2)

«(sin¢; scosf; + sing,-cosh;) (10)

In a similar manner, the equation for the east/west displace-
ment can be expressed

AE/W =[(180+AMD)/(w»{)] +tan(y/2)
«(sing; »sind; + singp, +sind?)  (11)

It was demonstrated in the ‘‘Vertical Planes’’ section that
total change in true vertical depth, TVD, can be expressed

ATVD = Retan(y/2)+(cose; + cose,) (12)

Again, substituting known variables for R, the change in
true vertical depth is

ATVD = [(180-AMD)/(mr«y)l «tan(y/2) «(cose, + cosgs)
(13)

It should be noted that if ¢, is equal in value to ¢, and 6, is
equal in value to6,, then the dogleg angle, y, is zero. Division
by zero in Egs. (10), (11) and (13) for this case makes them
invalid. It is recognized, however, that the tangential method
(API, 1985) provides the following equations which produce
no error for this ‘‘no-curvature’’ case:

AN/S = AMD ssing,ecosf, (14)
AE/W = AMD «sing¢,sinf, (15)
ATVD=AMDcos¢, (16)

cos(y/2) =/ 1/4+[(cose; + cOsdz)” + Sin’e; + Sim’hz + 2+ 5inch; *5ing;»cosAf]

Expansion of the term, (cos¢, + cosg,)?, substitution of the
equality, sin¢ + cos’¢ = 1, and collection of terms gives
cos(¥/2) =+/1/2+(1 + cOS$; *COSP, + SN, » Singh,COSAD)

)

Solving for ¥ results in
¥=2ecos ™ 'V/1/2+(1+ cosg; *COSP; + Sing; = singh;-COSAD)
(6)
Dogleg severity equals the dogleg angle, ¢, divided by arc
length expressed in hundreds of feet. Arc length is assumed

here to be equal to the difference in measured depth, AMD,
between survey stations. In oilfield units, the equation is

DLS = (200/AMD)
+c0s ™ '1/2+(1 + cosp;*COsH; + sine, ssine; «cosAf) O]

172 ] Vol. 114, JUNE 1992

)

APPENDIX B
Arc-Chord Correlations

Derivation for the Interpolation Ratio, F.. Refer to Fig. 9.
Point K is on the arc at the measured depth at which AX, AY,
AZ, ¢ and 0 are desired. Let the change in measured depth
between S1 and K, divided by the total change in measured
depth between S1 and S2 be F,. Let the distance along the
chord between S1 and I divided by the total chord length,
between S1 and S2 be F,. F, is equal to 0.25 in Fig. 9. Con-
sequently, the chord is divided into 4 line segments of equal
length, S1-I, I-D, J-D and J-S2.

Define F’ as
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F' =F for 0<F.<0.5;

=1~F,.for 0.5<F.<1.0 a7
Line segment S1-1 is equal to J-S2 and can be expressed
S1-1=1-S2=F"'«Resin(y/2) (18)

The sum of the “inner”” two chord segments can be expressed
as the difference between the sum of the ‘‘outer’ chord seg-
ments and the total chord length, 2R«sin(¥/2), as follows:

I-D+D-J=(1—2F")s2R«sin(y/2) (19)

The angle subtended by the arc between S1 and X is the
angle, w. Therefore, the ratio, F,, can be expressed as

Fu=w/Y (20)

Angle, 8, is the angle subtended by the arc drawn between

K and P (positive for w =< (/2), negative otherwise ). The length

of line segment K-L is
E—L=R-sin(6) 1)

Because K-L is also equal to half the sum of the ‘““inner’’
chord segments, the following can be written:

Resin(8)=(1 —~2F")sResin(y/2) (22)
Solving for & results in
d=sin"'[(1 — 2F")~sin(y/2)] (23)
Summing the angles in Fig. 9, for w=<(@}/2), results in
w=y—yY/2-5 (24)

If F* in Eq. (23) is replaced with F,, § becomes negative for
F.>0.5. As a result, Eq. (24) is correct if 8 is substituted for
using F, in Eq. (23) instead of F’. The result is

w=1/2—sin"[1 - 2F,) sin(y/2)] (25)
Substitution of w into (20) results in
Fr=1/2—(/¢)« {sin"'[(1 - 2F)~sin(¥/2)]}  (26)
Solving for F, yields
F.=0.5¢{1—1in[y«(0.5—F,)]1/sin(¥/2)) 270

Derivation of Arc Displacement, D,. Line segments, I-
K and J-M are normal to the chord. The distance between the
chord and the arc at the arbitrary point, K, is the arc dis-
placement, D,. By construction and for all F.=<0.3, I-D equals
D-J, I-K equals J-M and S1-I equals J-S2. Further, segment
1-J equals segment S1-S2 less the segment sum, (S1-I + J-S2).
The resulting expression for I-J is (for F’ as defined in Eq.

amn):

LI=(1—-2F")*2Rsin(y/2) 28)

Because K-L equals I-J/2 and R —sin(8), the following can
be written:

Resin(8)=(1 —2F’)*Resin(y/2) (29)
Solving for the angle, &, gives
§=sin"[(1 —2F")sin(y/2)] (30)

The arc displacement, D,, is equal to I-K or J-M; and I-K
is equal to H-K less C-D (or H-I): Because H-K = R-cos(w)
and C-D = R-cos(1///2), the equation for D, is

D,=R-[cos(8) — cos(y/2)] @31

In terms of known variables and in oilfield units, the radius
of a circular arc is (180«AMD)/(w«y). Substituting § and R in
Eq. (31) gives

D,=[(180-AMD)/(w<)]

«{cos[sin " [(1

—2F)esin(y/2)]] —cos(¥/2)} (32)

Journal of Energy Resources Technology

APPENDIX C

Derivation of Direction Cosines for the Arc displace-
ment, D,

The change in vertical depth between S1 and B is S1 —F (refer
to Fig. 8). The change in the X and Y directions between Sl
and B is found by multiplying G-A, by sin (f,) and cos(8,),
respectively. These relative displacements can be expressed as

AXy=Rtan(y/2)-sin(¢;)+cos(d,) (33)
AYy=R-tan(y/2)«sin(¢,)sin(f,) (34)
AZy=R«tan(y/2)cos(¢,) (35)

The inclination of the chord is the angle whose cosine is equal
to S1-G divided by S1-S2. After simplification of terms, this
expression is

INCpora=c0s ™' {[(¢ + ¢5)/2]cos(4/2) ) (36)

The vertical displacement between S1 and D is equal to S1-
D multiplied by the cosine of the inclination of the chord.
After simplification of terms, this equation is

AZ = Retan(y/2)+[cos(¢;) +cos(¢;)]/2

@7

Because D is the midpoint of the chord of the circular arc
between S1 and D, the change in X and Y displacements be-
tween S1 and D are the sum of one-half of segment G-A times
the sine an cosine, respectlvely, of AZM1 and one-half of
segment A-S2 times the sine and cosine, respectively, of AZM2.
After simplification, the equations are

AXy=1/2«R~tan(y/2)«[sin(¢)sin(f,) + sin(¢,)sin(6,)]
AY;=1/2«Retan(y/2)«[sin(¢;)cos(d,)
+sin(éy)cos(.)]  (39)

The coordinate displacements of D-B are computed by sub-
tracting the coordinates for D from those for B. The equations
are

(38)

D,=R -tan'(x/// 2)«[sin(¢)sin(f,) — sin(¢,)sin(d;)1/2  (40)
D, =Retan(y/2)«[sin(¢;)cos(6,) —sin(p)cos(f;)]/2  (42)
D,=R-tan(y/2)scos(¢,) — [cos(¢)]/2
Let p* equal the magnitude of D-B, and p” is
p* =D+ (D) + (D) 43)

After substitution and reduction, this gives
o =0.5Rstan(y/2)
o/2¢[1 —sin(e,)sin(ps)cos | AG| — cos(py)cos(pz)] (44)

Any displacements between the chord and the arc is parallel
to D-B. The direction cosines for any set of coordinate dis-
placements between the chord and the arc are expressed by
dividing each displacement (Eqs. (40)-(42)) by the magnitude
of D-B. If p is defined as p*/0.5R-tan(y/2), the result is

p=-/2[1—sin(¢,)sin(¢,)cos | AG! — cos(py)cos(e)]  (45)

The direction cosines for all line segments parallel to D-B
can be expressed

= [sin(¢y)sin(8;) - sin(¢,)sin(8,)]/p (46)
B = [sin(¢,)cos(f;) — sin(¢z)cos(6)]/p 47
= [cos(¢) — cos(¢2)]/p (48)

APPENDIX D

Derivation of Interpolation Equations

Reference is now to Fig. 8 for derivation of equations for
interpolation by the sectional method. Let point K be at the
measured depth at which interpolation is desired from the
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circular arc. Let the change in measured depth between S1 and
X divided by the total change in measured depth between S1
and S2 be the interpolation ratio, F,,. Let the distance along
the chord between S1 and I divided by the total chord length
between S1 and S2 be the interpolation ratio, F.. Line segments,
1K and J-M are normal to the chord. The distance between
the chord and the arc at the arbitrary point, K, is the Arc
Displacement, D,. Note, for I-D = D-J, that I.K = J-M. The
ratios, Fy, and F,, are related by the following equation (see
Appendix B for derivation):

Fe=0.5¢{1=sin[y+(0.5 - F,)1/sin(//2)) 27)

The distance from the chord to the arc is computed with the
following formula (see Appendix B for derivation) for the arc
displacement , D,:

D,=[180-AMD/(+y)]
«{cos[sin — 1[(1 — 2F.) »sin(y/2)]] — cos(y/2)} (32)

Let o, § and v be the direction cosines (X, ¥ and Z=axes,
respectively) for the line segment D-B (see Appendix C for
derivation). Also, as in Appendix C, p is defined as

p=~2+[1—in(¢,)sin(¢;)cos [ AGT — cos(¢;)cos(¢2)]
The equations for the direction cosines are

o= [sin(¢,)sin(6,) — sin(¢,)sin(6;)1/p (46)
B = [sin(¢,)cos(6;) — sin(¢z)cos(82))/p 47
y=I[cos(é;) — cos(¢)]/p 48)

Let AX,, AY, and AZ, be displacements between stations S1
and S2; and let AX;, AY; and AZ; be displacements between
S1 and point K -

AX;=F.AX;+Dyra (49)
AY;=F,*AY,+ D, (50)
AZ;=F 2AZ;+Dyoy (51)

Interpolated Azimuth and Inclination. The inclination at
point K is ¢, in Eq. (11) after AZ; is substituted for ATVD,
¢ for ¢y, and ¢; = F,ey

¢;=cos ™' {[AZ;/Rtan(yi/2)] - cos(¢y) ] (52)

The change in azimuth can be found by substituting the
foregoing variables into Eq. (6) and solving for Ad

Af=cos™'{[2:cos(y/2) — 1

— cos(¢y)cos(¢)]/ [sin(e)sin(e)])  (53)

Equation (53) provides only the magnitude of the azimuth
change. The direction of change is assumed to be continuous

from the first station to the second and can easily be computed
by

B0,/ A6
Then the interpolated azimuth at the intermediate station is
6;=80,-£A0 (54)
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